منابع مشابه
Which elements of a finite group are non-vanishing?
Let $G$ be a finite group. An element $gin G$ is called non-vanishing, if for every irreducible complex character $chi$ of $G$, $chi(g)neq 0$. The bi-Cayley graph ${rm BCay}(G,T)$ of $G$ with respect to a subset $Tsubseteq G$, is an undirected graph with vertex set $Gtimes{1,2}$ and edge set ${{(x,1),(tx,2)}mid xin G, tin T}$. Let ${rm nv}(G)$ be the set of all non-vanishi...
متن کاملPairwise non-commuting elements in finite metacyclic $2$-groups and some finite $p$-groups
Let $G$ be a finite group. A subset $X$ of $G$ is a set of pairwise non-commuting elements if any two distinct elements of $X$ do not commute. In this paper we determine the maximum size of these subsets in any finite non-abelian metacyclic $2$-group and in any finite non-abelian $p$-group with an abelian maximal subgroup.
متن کاملwhich elements of a finite group are non-vanishing?
let $g$ be a finite group. an element $gin g$ is called non-vanishing, if for every irreducible complex character $chi$ of $g$, $chi(g)neq 0$. the bi-cayley graph $bcay(g,t)$ of $g$ with respect to a subset $tsubseteq g$, is an undirected graph with vertex set $gtimes{1,2}$ and edge set ${{(x,1),(tx,2)}mid xin g, tin t}$. let $nv(g)$ be the set of all non-vanishing element...
متن کاملpairwise non-commuting elements in finite metacyclic $2$-groups and some finite $p$-groups
let $g$ be a finite group. a subset $x$ of $g$ is a set of pairwise non-commuting elements if any two distinct elements of $x$ do not commute. in this paper we determine the maximum size of these subsets in any finite non-abelian metacyclic $2$-group and in any finite non-abelian $p$-group with an abelian maximal subgroup.
متن کاملgroup actions related to non-vanishing elements
we characterize those groups $g$ and vector spaces $v$ such that $v$ is a faithful irreducible $g$-module and such that each $v$ in $v$ is centralized by a $g$-conjugate of a fixed non-identity element of the fitting subgroup $f(g)$ of $g$. we also determine those $v$ and $g$ for which $v$ is a faithful quasi-primitive $g$-module and $f(g)$ has no regular orbit. we do use these to show in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2016
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2016.05.003